Thermo-Electric Control Board for Integrated Optical Beam Forming Network

James McKenna
University of California, Santa Barbara Electrical Engineering Major
Yuan Liu, Professor Jonathan Klamkin
Electrical and Computer Engineering Department
Utilizing higher frequency “millimeter wave” (75GHz-110GHz) for communications to drastically improve data transmission rates

- Shorter wavelength = More directional beam

- Using integrated optics to steer beam

Increasing Delay

Path 1 (Most Delayed)

Path 4 (Least Delayed)

Each delay achieved by ring resonator

Each ring resonator has heater paired with it
Goal: Design 64-channel programmable current source

- Need to control 64 independent current sources to tune delays
- Controlled from PC via I²C communication
Amplifier design

- Utilizing a common op-amp feedback circuit with several additions to supply large amount of power (> 1 Watt)
- Achieve max output conditions of 30 V, 43 mA given a 700 Ohm load

\[
\frac{R_2}{R_1} \approx 5
\]

\[
V_{out} = 6V_{in} \left(1 + \frac{R_2}{R_1}\right) V_{in}
\]

\[
V_{out} : 0-30 \text{ V}
\]
DAC Resolution Requirement

- Current sources must be precise within 0.01 mA

Since \(I = \frac{V_{out}}{R_{load}} \)

This implies that \(\Delta I = \frac{\Delta V_{out}}{R_{out}} \)

Our amplifier circuit gives us \(\Delta V_{out} = 6 \times \Delta V_{in} \)

The DAC gives us \(\Delta V_{in} = 5 \times 2^{-n} \), \(n = \) bit resolution

Solving for \(n \), we obtain \(n \approx 12 \) bits
Main tests: Linearity and Stability

- Linearity: When changing the input voltages, the output varies linearly.
- Stability: Output does not vary significantly if circuit is running at max power for long periods of time.
Testing results

Linearity

$y = 6.0281x - 0.1038$

Gain ~ 6
Stability

Max variation = 0.3%
PCB Design For Board (In progress)

Example of another PCB control board

Conclusions and Future Work

- Next Step: Finish PCB design and solder final board

- The thermo-electric control board will help tune and optimize the integrated beam forming network

- A successful integrated optical beam forming network will bring us one step closer to revolutionizing wireless communication.
Special thanks to:

- Mentor: Yuan Liu
- Faculty Advisor: Jonathan Klamkin
- Wendy Ibsen and the AIM Photonics Program
- All AIM participants and speakers