Multimode Interference Waveguides

Jesus Perez
Mechanical Engineering Major
Santa Barbara City College

Mentor: Akhilesh Khope
Faculty Advisor: John Bowers
ECE Department
Why Integrated Photonics?

• **Vast potential in integrated optical circuits**
 - Larger bandwidth, faster speeds, lower energy consumption

• **The Growing Digital Universe**
 * 44 Trillion Gigabytes

 ![Graph showing data growth from 2008 to 2020](chart)

 Sources: Oracle, 2012

• **American Institute for Manufacturing Integrated Photonics (AIM)**
 - Develop process flows that permit the re-use of the current electronic fabrication infrastructure
 - High performance hardware requires optimal efficiency in every component
 - Multimode interference proves to be a vital technique in high performance
Splitting and Combining Mid-Infared Lightwaves

- Generating multiple images of input field:

 ![Image](http://www.electronics.dit.ie)

- For various applications in photonic circuits:
 - 2x2 Mach-Zehnder Switch
 - Polarization-insensitive photodetectors
 - Power splitters and combiners

![Diagram](http://spie.org/Images/Graphics/Newsroom/Imported-2013/005035/005035_10_fig1.jpg)
Why Multimode Interference Waveguides?

- Higher tolerance to dimension changes in fabrication process
- Easier fabrication process than other couplers
 - Do not require submicron gaps found in directional couplers
- Low inherent losses
 - Loss depends on the quality of the input
- Large optical bandwidth
- Low polarization dependence

Optical Circuit for Telecommunication Application

- Input light is split, sending it through an optical cross-connect and output port

Principles of Guided Mode Propagation

1) Input field profile at distance “z = 0”:

\[E(x, 0) = \sum_{m=0}^{M-1} a_m U_m(x). \]

2) Superposition of individual modes at propagation distance “z”:

\[E(x, z) = \sum_{m=0}^{M-1} a_m U_m(x) \cdot e^{-j\beta_m z}. \]

- Modal excitation factor

3) Inserting propagation constant:

\[E(x, z) = e^{-j\kappa n_1 z} \sum_{m=0}^{M-1} a_m J_m(x) \cdot e^{j2\pi (m+1)^2(z/L_{si})}. \]

- Phase of lateral plane wave
- Mode phase factor

4) Self-imaging distance: \(L_{si} \) * Inserting for “z” we get self-image
General Interference for 2x2 MMI waveguides

- Inserting $\frac{L_{si}}{4}$ for “z”:

$$e^{j(\pi/2)(m+1)^2} = \begin{cases} j & \text{(even m)} \\ 1 & \text{(odd m)} \end{cases}$$

- Separating into even and odd modes:

$$e^{-jk_{0}n_{s}L_{si}/4} \left(\frac{1+j}{2} E(x,0) - \frac{1-j}{2} E(-x,0) \right)$$

- Input Field
- Mirrored Input Field

* We can use this length to produce an efficient 2x2 MMI coupler

- 2x2 MMI Waveguide:
Restricted Interference for 1x2 MMI Waveguides

- For general interference, compacted with stepping integer p:
 \[
 \frac{j^p}{2} E(x,0) + E(-x,0) + \frac{1}{2} E(x,0) - E(-x,0)
 \]
 - Even/ symmetric
 - Odd/ antisymmetric

- Using Fourier Analysis:
 \[
 L = \frac{p}{N} \left(\frac{L_{si}}{2} \right)
 \]

- For symmetric interference, odd term disappears:
 \[
 L = \frac{p}{N} \left(\frac{L_{si}}{8} \right)
 \]
 - Self-image now appears at quarter of the distance

- 1x2 MMI Waveguide:

Lumerical MODE Solutions
Designing Multimode Interference Couplers

- [1x2] Restricted MMI Waveguide

1) Normalized frequency: \[V = k_0 d \left(n_{\text{II}}^2 - n_{\text{III}}^2 \right)^{1/2} \]

2) Propagation Parameter: \[b = \frac{\bar{n}_{\text{II}}^2 - n_{\text{III}}^2}{n_{\text{II}}^2 - n_{\text{III}}^2} \equiv 1 - \frac{\ln \left(1 + \frac{V^2}{2} \right)}{\frac{V^2}{2}} \]

3) Effective Index: \[\bar{n}_0 = \sqrt{b (n_{\text{II}}^2 - n_{\text{III}}^2) + n_{\text{III}}^2} \]

4) Self-imaging length: \[L_{si} = \frac{\lambda}{(n_{\text{II}} - \bar{n}_0)} \]

5) Applying previous restricted length for restricted propagation: \[L = \frac{p}{N} \left(\frac{L_{si}}{8} \right) \]
Lumerical MODE Solutions

- **Design Model**
 - Specific material
 - Calculated dimensions
 - Add signal source (1.55 microns)
 - Monitors

- **Simulation**
 - EME (Eigen Mode Expansion)
 - FDTD (Finite Difference Time Domain)

- **Cross Sectional View**

- **1x2 MMI Waveguide (Perspective)**
Optimization and Simulation

- Adjusting Output Waveguide Position
 - Optimize transmission of fundamental mode
 - Reduce back reflection into input

- Distance from center

- Input

28.9% to 33.3% increase in transmission

4.34% to 0.36% decrease in back reflection
Optimization and Simulation

- Accounting for radiation mode loss
 - Transmission loss through change in width:

- Introduce tapered inputs/outputs

- Loss vs Taper Width
 - Increased width, decreased loss
 - Limited width increase
Finalizing 1x2 MMI waveguide

- **Introduced taper transmission**:
 - Increased length, increased transmission
 - Limited length increase

- **FDTD Simulation of a Input**:
 - Pulse input @ 1.55 microns
Final Dimensions and Future Application

- **MMI Length**
 - Calculated optimal length for modal splitting

- **Output Positioning**
 - 28.9% to 33.3% increase in transmission
 - 4.34% to 0.36% decrease in back reflection

- **Taper Introduction**
 - 33.3% to 48.3% increase in transmission
 - 0.36% to 0.32% decrease in back reflection

- **Application**
 - Use techniques for 2x2 MMI waveguides
 - Increase efficiency in future optical circuits

- **Final Dimensions**

1x2 MMI Waveguide
Acknowledgements

- **Mentor:** Akhilesh Knope
- **Program Director:** Wendy Ibsen
- **CSEP Program Coordinator:** Stephanie Mendes
- **Faculty Advisor:** John Bowers
- **SBCC Advisor:** Jens- Uwe Kuhn
- AIM interns and mentors