Quantum Dot Lasers Grown on Silicon

Katie Turnlund, Physics, UCSB
Justin Norman, John Bowers; Electrical & Computer Engineering
Funding: AIM Photonics, ARPA-E
Silicon Photonics

Increasing demand for bandwidth

Silicon offers an economic-friendly solution

![Graph showing demand versus capacity from 2010 to 2016.](image)

Image courtesy of Daehwan Jung

- **InP**: 4.55 $/cm² (6 inch)
- **GaAs**: 1.65 $/cm² (8 inch)
- **Si**: 0.20 $/cm² (18 inch)
The Flaws of Using Silicon

- Dislocations from the GaAs-Si mismatch cause diminishing device performance.
Quantum Dot Laser Structure

- **Mirrors**
- **P Cladding**
- **Active Region**
- **N Cladding**

[Diagram showing layers of the laser structure: P cladding, Active Region, N Cladding, Mirrors, with labels for probe metal, p contact, QDs, n cladding, 7 µm, GaAs/Ge buffer, and Silicon.]
Molecular Beam Epitaxy
Quantum Dots

Quantum well
• 2-D confinement
• Discrete energy levels

Quantum Dot
• 3-D confinement
• Discrete energy levels
Characterizing a Laser

Modular Integrating Sphere

Gathers power output from laser

Optical Spectrum Analyzer (OSA)

Gathers wavelengths emitted from laser

Power vs. Current

Power vs. Current
Device Threshold

<table>
<thead>
<tr>
<th>Device</th>
<th>Threshold (mA)</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs (red)</td>
<td>44.2 mA</td>
<td></td>
</tr>
<tr>
<td>Quantum Dot (blue)</td>
<td>42.1 mA</td>
<td></td>
</tr>
</tbody>
</table>

- Thresholds for quantum dot lasers are comparable to those grown on GaAs
Device Injection Efficiency

- Efficiency of quantum dot lasers comparable to GaAs

![Graph showing device width (um) vs efficiency for GaP/Si and GaAs]
Summary

• GaP/Si devices performed within range of similar GaAs devices
• Commercial viability
• Applications in data centers
Future steps

Comparing different compositions and thicknesses of cladding layers

<table>
<thead>
<tr>
<th>Cladding</th>
<th>Quantum Dot active region</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 nm pGaAs</td>
<td>7x 46 nm GaAs/InGaAs/InAs/InGaAs QDWell</td>
</tr>
<tr>
<td>50 nm pGaAs → pAl0.4Ga0.6As</td>
<td></td>
</tr>
<tr>
<td>1.4 μm pAl0.4Ga0.6As</td>
<td></td>
</tr>
<tr>
<td>20 nm pAl0.4Ga0.6As → pAl0.4Ga0.6As</td>
<td></td>
</tr>
<tr>
<td>30 nm pAl0.4Ga0.6As</td>
<td></td>
</tr>
<tr>
<td>12.5 nm GaAs</td>
<td></td>
</tr>
<tr>
<td>50 nm GaAs</td>
<td></td>
</tr>
<tr>
<td>30 nm nAl0.2Ga0.8As</td>
<td></td>
</tr>
<tr>
<td>20 nm nAl0.2Ga0.8As → nAl0.4Ga0.6As</td>
<td></td>
</tr>
<tr>
<td>1.4 μm nAl0.4Ga0.6As</td>
<td></td>
</tr>
<tr>
<td>50 nm nAl0.4Ga0.6As → nGaAs</td>
<td></td>
</tr>
<tr>
<td>500 nm nGaAs</td>
<td></td>
</tr>
<tr>
<td>III-V on Si Growth Template</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

• Thanks to Daehwan Jung, Ian MacFarlane, and Bongki Shin, as well as the rest of the quantum dot laser team.

• Award Information:
 • **AIM Photonics**: This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5220. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.
 • **ARPA-E**: ARPA-E DE-AR0000672