Characterization of Wavelength Selective Photonic Switches for Scalable Data Center

RAYMOND YU
MITRA SAEIDI, AKHILESH KHOPE, YUJIE XIA, ANDY NETHERTON,
PROF. LUKE THEOGARAJAN, & PROF. CLINT SCHOW
Microsoft tests underwater data center

• In 2014, data centers in USA consumed 70 billion kWh ~2% of total energy!¹

Photonics

• Secure communication
• Faster data processing
• Energy efficient!

Wavelength Division Multiplexing

On-Chip Optical Switching

- Signals are combined (MUX) into one fiber
- Signals are re-routed from one channel to another and separated out (DEMUX)
- This process can be scaled down with integrated photonics
Wavelength Selective Switch

- Resonant wavelengths are thermally tuned
- One signal can be **added** to the same path of another signal
- Input signal can also be **dropped** off to another path

Second Order Microring Resonator
Integrated Photonics Switch Design

- Electrical-Pads
- Optical-Switches
- Optical-Edge Couplers
- Fabricated through the AIM Photonics foundry
Coupling to Channels

- 4 Output channels
- 4 Input channels
1. Maximizing the Transfer Function of Switches

- Transfer function is measured from the drop port
- Goal is to maximize coupling into 2 sets of second order rings
- Create 3.2 nm separation between resonant peak
- Working in the telecommunication wavelength (C-band: 1530 nm – 1565 nm)
2. Bit Error Rate Test

- Distinguishable lines: Low noise and jitter
- Symmetric open eye: wide bandwidth and high signal

![Eye Diagram](image)

- Modulated signal is sent at the resonant wavelength of one pair of rings
- Inability to distinguish signal correctly generates errors
- Known bits of signal is compared with to determine number of errors

- Distinguishable lines: Low noise and jitter
- Symmetric open eye: wide bandwidth and high signal
3. Switching (Rise/Fall) Time

- Heat/Energy takes time to transfer
- Electrical signal is obtained through oscilloscope

Diagram

- DAC sends on/off signal
- Tunable Laser
- Device Under Test
- Optical → Electrical Signal Converter
- DAC tunes ring resonance to let light pass/not pass
Ports Under Test

Port Sets:

• IO 1 = Input 1 & output 2
• IO 2 = Input 3 & output 3
• IO 3 = Input 4 & output 4
Transfer Function

![Graph showing transmission vs. wavelength with different curves labeled IO 1, IO 2, IO 3.]
Bit Error Rate Test

BER vs Optical Attenuation

Log10(BER)

Attenuation [dBm]

IO 1
IO 2
IO 3
Switching Time Oscilloscope

- Switching time is shown for a thermal tuner in IO 1
- Time axis includes negative value because oscilloscope set t=0 when triggered
Switching Time

\[T_{\text{rise}} = 1.8 \times V - 2.9 \]
\[R^2 = 0.9534 \]

\[T_{\text{fall}} = 0.3 \times V + 0.12 \]
\[R^2 = 0.9184 \]
Conclusion

• Able to simultaneously switch 2 wavelengths and separate local maxima by 3.2 nm to reduce optical cross talk

• BER test demonstrates a low error rate of 10^9 for IO1 @ 15 dBm optical attenuation but needs to be repeated

• Coupling decreases with increasing I/O #, resulting in lower signal to noise ratio (SNR)

• Eye diagram show high noise and jitter but wide bandwidth

• Optical power is reduced by >50% at 4 V difference, which requires less than 5 us switching time
Future Work

• BER test needs to be repeated for all the I/O
• Repeat the above experiments with a fiber array
• Reduce noise and measure optical crosstalk
• Decrease switching time with a material that allows electro-optic tuning (i.e. lithium niobate) or through carrier depletion
Acknowledgement

• I would like to thank: Mitra Saeidi, Akhilesh Khope, Yujie Xia, Andy Netherton, Prof. Luke Theogarajan, & Prof. Clint Schow

• Thank you CSEP for all the free pizza and amazing professional development resources!

• Shout out to Wendy for being super supportive!!!

• Thanks to AIM Photonics for providing funding

This material is based on research sponsored by Air Force Research Laboratory under agreement number FA8650-15-2-5220. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.