

Simon Egner

NSF-REU Summer 2018

TRINITY

• 48,000 Students

URBANA-CHAMPAIGN

- 50 US States Rep.
- 65 Countries Rep.
- 150+ Majors
- Big Ten
- 6,370 Acres
 - (MIT: 168 Acres)

emat@mit

• 13,000 Students

Espinosa-Marzal Lab

Stick–Slip Friction Reveals Hydrogel Lubrication Mechanisms *Langmuir*, **2018**, *34* (3), pp 756–765

I CEE AT ILLINOIS

Autonomous Materials Systems -

Dr. Nancy Sottos

pH Responsive Coatings

Esser-Kahn et al, 2011

/icrophotonicsCenter

emat@mit

100.0µm

- Incorporated PbO into the source to reduce carrier concentration
 - Resulted in carrier type change
- Studied PbSnTeO material with various characterization techniques
 - FTIR, XRD, Hall Effect, XPS, Responsivity

Implications/Key Findings

- PbO in source changes from p-type to ntype
 - Post dep O sensitization typically leads to increase in p-type
- O preferentially binds Sn in bulk
- Less Sn than targeted
 - Oxygen bonding prevents evap.

Key Points for Discussion Today

- Effect of PbO in source
- Calculation of band gap
- PbO affect on crystal structure
- Oxygen binding to Sn in the bulk

10

Sample Summary

Target	WDS
Pb _{0.85} Sn _{0.15} Te _{0.99} O _{0.01}	Pb _{0.86} Sn _{0.14} Te _{1.02} O _?
$Pb_{0.85}Sn_{0.15}Te_{0.975}O_{0.025}$	Pb _{0.88} Sn _{0.12} Te _{0.99} O _?
$Pb_{0.85}Sn_{0.15}Te_{0.96}O_{0.04}$	Pb _{0.90} Sn _{0.10} Te _{0.96} O _?
$Pb_{0.85}Sn_{0.15}Te_{0.95}O_{0.05}$	Pb _{0.89} Sn _{0.11} Te _{1.0} O _?
$Pb_{0.85}Sn_{0.15}Te_{0.90}O_{0.10}$	Pb _{0.92} Sn _{0.08} Te _{0.99} O _?

• PbO does not greatly affect crystal structure

Accomplishments & Plans

- Able to tune carrier concentration and type with PbO
- Discovered oxygen in the source leads to Sn bound oxygen in the bulk
- Future experiments with TEM to determine bulk oxygen location
- New deposition method that separates SnTe from PbO
- Investigate what variables account for carrier concentration change
 - **o** 0
 - Te vs. PbSn

Questions?

