Generation and Utilization of Frequency Combs

Brendan Lynch

HELLO!

Frequency Combs

Necessary for the future of nanophotonics, and practical aplication in supercomputers, AI, and Data Centers.

Overview of theSystem

Let's start with an understanding of how the system is build.

2. The Difference between LEDs and Combs

Why is optics switching to Combs

Options other than Combs

- LED's (Broadband light)
- Multiple Signals
- Single Line Communication

The use of frequency combs requires only one source, making use in nanophotonics more possible.

3.Generation of theComb

How many combs, and how do they need to be spaced?

Wavelength Division Multiplexing

Split into channels via wavelength

Wavelength Division Multiplexing

Eliminate Crosstalk

Making sure that all frequencies that are not supposed to be in the channel are eliminated

Conserve Power

Keep all power that is input in the system.

Minimize Sizing

For nanophotonics, the multiplexer is usually the largest component on chip, so minimizing it is of significant interest.

Thank You!

REFERENCES

- W. Bogaerts, S. Pathak, A. Ruocco, S. Dwivedi, Silicon photonics non-resonant wavelength filters: comparison between AWGs, echelle gratings and cascaded Mach-Zehnder filters, 3rd ed. Gent Belgium: Ghent University, 2015.
- [2] C. Dragone An NxN Optical Multiplexer USing a Planar Arrangement of Two Star Couplers, IEEE. Holmdel, NJ: ATT Bell Labratories, 2015.
- [3] K. Dravnicks, S. Spolitis, Demonstration of Scalable Spectrum-sliced Optical WDM-PON Access System, Electromagnetics Research Symposium. Riga, Latvia: Riga Technical University, 2017.
- [4] I. L. Gheorma, G. Gopalakrishnan, Flat Frequency Comb Generation With an Integrated Dual-Parallel Modulator, IEEE Photonics Technology Letters. Jessup, MD: Covega Corp, 2007.
- [5] Y. Hida, Y. Hibino, et all. 400 channel arrayed-waveguide grating with 25 GHz spacing using 1.5 waveguides on 6inch Si wafer. Japan: NTT Photonics Laboratorics, 2001.
- [6] D. Jones, S. Diddams, J. Ranka, et al., Carrier-Envelope Phase Control of Femtosecond Mode Locked Lasers and Direct Optical Frequency Synthesis, Physics Commons. Boulder, CO: University of Colorado Boulder, 2000.
- [7] J. S. Lee, Y. C. Chung, D. J. Digiovanni, Spectrum-Sliced Fiber Amplifier Light Source for Multichannel WDM Applications, IEEE Photonics Technology Letters. Murray Hill, NJ: ATT Bell Laboratories, 1993.
- [8] J. Lin, Y. Xu, H. Sepehrian, L. Rusch, W. Shi, Nyquist-WDM Super Channel Using an On-Chip Frequency Comb enabled by a Silicon Dual-drive MZM, Optical Society of America. Quebec, Canada: Universite Laval, 2018.
- [9] J. Lu, J. Vuckovic, Nanophotonic computational design, Optical Society of America. Stanford, CA: Stanford University, 2013.
- [10] J. Lu and J. Vuckovic, Inverse design of nanophotonic structures using complementary convex optimization, Optical Society of America. Stanford, CA: Stanford University, 2010.

- [11] J. Lu and J. Vuckovic, Objective-first design of highefficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes, Optical Society of America. Stanford, CA: Stanford University, 2012.
- [12] K. P. Nagarjun, V. Jeyaselvan, et al, Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators, Centre for Nano Science and Engineering. Bangalore, India: Indian Institute of Science, 2018.
- [13] N. A. Olsson, Lightwave Systems with Optical Amplifiers, Journal of Lightwave Technology. Murray Hill, NJ: ATT Bell Labratories, 1989.
- [14] S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, Ultraflat Optical Comb Generation by Phase-Only Modulation of Continuous-Wave Light, IEEE Photonics Technology Letters. Orlando, FL: University of Central Florida, 2007.
- [15] A. Pigg, J. Lu, et all., Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer, Ginzton Laboratory. Stanford, CA: Stanford University, 2015.
- [16] T. Sakamoto, T. Kawanishi, M. Izutsu, Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator, Optics Letters. Tokyo, Japan: National Institute of Information and Communications Technology, 2007.
- [17] T. Sakamoto, A. Chiba, Nultiple-frequency-spaced flat optical comb generation using a multiple-parallel phase modulator, Optics Letters. Tokyo, Japan: National Insititute of Information and Communications Technology, 2017.