

Digital Control Electronics For Optical Gyroscopes

Marco Cerrato, Physics B.S. Daniel Blumenthal, Ph.D. Sarat Gundavarapu, Graduate Mentor Dept. of Electrical & Computer Engineering July 28th, 2016

➢ Highly Sensitive Rotational Sensors

Employed in Aircraft Navigation

➢Potential Use in Other Industries

Fiber Optic Gyroscope

Project Milestones

Goal: Miniaturize Bulky Optic Gyros into On-Chip Versions.

Size Reduction

- Low Power Draw
- Very Precise Measurements
- Digital Control Electronics

Of Gyro Is Maximized

Very High Speed Integrated Circuit Hardware Descriptive Language (VHDL)
Hardware Descriptive Programming Language Exclusive to FPGAs

- Xilinx ISE Design Suite 14.7
 - Native FPGA Programming & Assignment Software
- ➢ ISIM VHDL Simulation Software

6

Models VHDL Behavior

FPGA Signal Traces

Programmed FPGAs To Synthesize Different Frequencies

➢ Also Changed Duty Cycle Of Signal

1	 34,449,140 ns	34,4	1 9, 160 ns	34,449,180 ns	34,449,200 ns	34,449,220 ns	34,449,240 ns	34,449,260 ns
					100			
					10000 ps			
1								

Ex: Variable Duty Cycle, 75% to 25%

0 ns	 10 ns	 20 ns	 30 ns	 40 ns		50 ns	60 ns	 70 ns	 80 ns	
										1
				000						
				10000	os					

Ex: Generate 5MHz, Simulation To Oscilloscope Trace

Why Do This?

Current Roadblock(s)

- Current Signal Frequency Can be Changed Statically
 - After Re-Programming Or Restarting Oscilloscope
- Problem: Can't Make Signal Change Dynamically
 - No Oscilloscope Restart Or Re-Programming

- Control Electronics:
 - More Testing Of FPGAs
 - Integrate FPGA Signals With Gyroscope
- Error Analysis:
 - Analysis Techniques Such As Allan Deviation (Frequency Stability)
 - Apply To Discover Noise Error Types And Possible Solutions
- General:
 - Attempt Closed Loop Circuit of Optical Gyroscope
 - Custom Beginning-To-End Gyroscope Testing Process

Acknowledgements

- I Extend My Gratitude To The Following:
 - AIM Photonics Internship Group
 - Daniel Blumenthal
 - Sarat Gundavarapu
 - McNair Scholars Program
 - Optical Communications and Photonics Networks Group

Questions?