

# Mach-Zehnder Interferometer Design for Optical Isolation

Micaela Saunders, Physics, Ventura College

Paolo Pintus, Electrical Engineering

John Bowers, IEE, Electrical and Computer Engineering









# **Communication by Light**

# 2016: What happens in an Internet Minute?

www.excelacom.com/resources/.../2016-update-what-happens-in-oneinternet-minute



2.4 Million Search Queries



69,444 Hours Watched



\$203,569 In Sales



Future communication technology must include:

- More data transmission
- Low power consumption
- Faster communication



# **Integrating Photonics**

- Combine many device functions on a single chip
  - Small size
  - Large volume of production
  - Low cost
  - Low energy use





# Mach-Zehnder Interferometer Design

### **Optical Isolators**

- What is an optical isolator?
  - Light **CAN** propagate in the forward direction
  - Light CANNOT propagate in the backward direction
- Why is it important?
  - Avoid back-reflection out a laser cavity
- Which material for an isolator?
  - We need a nonreciprocal material (e.g. Ce:YIG)

http://www.nature.com/nphoton/journal/v7/n8/fig\_tab/nphoton.2013.185\_F2.html

 $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ 



- 1. Find an equation to describe light propagation through a MZI
- 2. Implement model into Matlab
- 3. Engineer the length of two waveguide arms







1560

Wavelength (nm)

1570

to fabrication error  $\rightarrow$  **robust design** 



## **Optimization for Spectral Shift**

- Previously we found the solution
  - L1 = 327.06 µm
  - L2 = 327.89 µm
- However, multiple solutions exist
  - L1 = 327.06 µm + (m + n)\*0.175 µm + (n m)\*655.96 µm
  - L2 = 327.89  $\mu$ m (m + n)\*0.175  $\mu$ m + (n m)\*655.96  $\mu$ m

Where (n, m) integers of resonance

#### Where is the *minimal* shift? What is n and m?



### Waveguide Cross-Section

- h<sub>si</sub> is the silicon thickness, • nominal value 220nm
- **w**<sub>si</sub> is the silicon waveguide width nominal value 600nm
- L1: Length arm 1
- L2: Length arm 2





### Shift Caused by Error of 1 nm

$$L_{1} = \frac{\pi}{4\delta k} + \frac{\pi}{4k} + (n-m)\frac{\pi}{2\delta k} + (m+n)\frac{\pi}{2k}$$
$$L_{2} = \frac{\pi}{4\delta k} - \frac{\pi}{4k} + (n-m)\frac{\pi}{2\delta k} - (m+n)\frac{\pi}{2k}$$

|                | Δλ (nm) h <sub>Si</sub> | Δλ (nm) w <sub>si</sub> | L2 (µm) | L1 (µm) | m  | n  |
|----------------|-------------------------|-------------------------|---------|---------|----|----|
| Solution       | -0.659                  | -0.456                  | 327.89  | 327.06  | 0  | 0  |
| Not a solution | Х                       | Х                       | -328.24 | -327.71 | 1  | 0  |
|                | 3.897                   | 0.761                   | 984.02  | 983.85  | -1 | 0  |
|                | 2.202                   | 0.301                   | 328.24  | 327.71  | -1 | -1 |
|                | -0.659                  | -0.456                  | 327.89  | 328.07  | 0  | -1 |
|                | 1.426                   | 0.1                     | 327.54  | 328.41  | 1  | 1  |



# **Steps for Optimization**

- Modeling a MZI for optical isolation (Math/Physics)
- Implementing the model in Matlab (Coding)
- Simulating a MZI (Analysis)
- Design a robust MZI (Synthesis)



- What happens if we change the optical length of the arm?
- Modify to have a more robust design (e.g., thermal control)



### Acknowledgements





### 1550 nm





### Reflections

